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The hard-core lattice gas

Domain: A = (Z/LZ)? (“a discrete L x L torus”).

Configuration: a set o C A with no two points at distance one.

Fugacity parameter: A > 0.

. #o
Probability measure: pp x(o) = % where:

)

e #o is the number of points in o.
e Zp » is a normalization constant (the partition function).
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Phase transition in the hard-core model

@ Restrict to even L. The long-range order is captured by two events:
e Ey = {99% of the points in o have an even sum of coordinates}.

e E; ={99% of the points in o have an odd sum of coordinates}.

Theorem (Dobrushin, 1968)

For all sufficiently large X,

lim puaa(Eo U Er) =1
L—o0

L even

@ Dobrushin uniqueness condition: model is disordered at small .

@ Open: Is there a single transition point A. from a disordered to an
ordered state?



Continuum hard-core models

e Configuration o consists of spheres in a domain in RY.

e Sampled with probability proportional to A%
(with respect to a suitable Lebesgue measure).

@ Major open problems:
Is there an ordered state in dimensions d > 37
Is the rotational symmetry broken in dimension d = 27
Richthammer (2007): No translational-symmetry breaking in two
dimensions.
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Lattice hard-core models

o Comprehensive study by Mazel-Stuhl-Suhov (2018-19) of hard-core
models on Z?2, triangular and hexagonal lattices with general radius of
exclusion.

@ Prove long-range order at high fugacities in non-sliding cases.

@ Sliding phenomenon:

o Significant non-uniqueness of maximal density packings due to a sliding
degree of freedom.

o Occurs for a finite number of exclusion radii.

o Unclear whether these cases still undergo a phase transition.
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Lattice hard-core models: Sliding
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Two cases where sliding occurs: Ho,D =2 72 D =3
image credit: Mazel-Stuhl-Suhov

Sliding in the 2 x 2-hard-square model (Z2, D = 2)



Hard rod models

@ Monomer-Dimer model:
o Configuration consists of 2 x 1 rods (i.e., a matching).
o Heilmann—Lieb (1972) famously proved the absence of a phase
transition on all graphs.
@ Many other models:
o Onsager (isotropic-nematic transition in liquid crystals, 1949)
o Heilmann—Lieb (1979) and
Jauslin—Lieb (interacting monomer-dimer 2018).
o loffe-Velenik-Zahradnik (variable length rods on Z2, 2005)
o Disertori-Giuliani (long rods on Z2, 2013),
o Disertori-Giuliani—Jauslin (anisotropic plates in R3, 2020)

image credits: Zvonimir Dogic (2016), Nicolas Allegra (2015), Heilmann-Lieb (1979)



The 2 x 2 hard squares model

o Domain: A = (Z/LZ)? (“a discrete L x L torus").
o Configuration: a set o of pairwise disjoint 2 x 2 tiles with centers in A.

o Fugacity parameter: A > 0.
2

. . : #o—Lr
@ Probability of a configuration: pp x(o) = )\ZA A4 where:

o #o is the number of tiles in o.
(—4 <#a - L;) counts vacant 1 x 1 squares).
e Zp  is a normalization constant (the partition function).




Main result: Columnar order

@ Restrict to even L.

@ Each tile has one of four parities:
(Even,Even), (Even,Odd), (Odd,Even), (Odd, Odd).

o Let E| o, be the “ordering by even columns” event:
more than 49% of the tiles have parity (Even, Even), and
more than 49% of the tiles have parity (Even, Odd).

o Similarly define E| 1, E_ o, E_ 1. -

Theorem (H.—Peled, 2021+) mm
For all sufficiently large X, -5

lim ,LL/\7)\(E|0UE|1UE_0UE_1):1 "
L_>m 9 b} ’ b

L even

an illustration of E| o



Properties of the ordered states

Theorem (H.—Peled, 2021+)
For sufficiently large X, the following holds:

The set of doubly-periodic infinite volume Gibbs measures, is a simplex
with four vertices (denoted fiyer,0, fiver,1, fthor,0 @Nd fihor,1).

These four measures are related to each other by translations and
rotations.

One of them (jiyer,0) satisfies the following:
Q [iver0 is (2Z x Z)-invariant and extremal.
@ Columnar order: piyer o (0(0,1)) = O(A7L).

© Correlations decay exponentially with distance,
for a non-isotropic distance function:

dver (31, 1), (%2, ¥2)) := A2 ]yo — y1| + [x2 — x1




Proof Ideas

o Note: we only discuss the proof of orientational order.



Interfaces between phases




For a configuration o, define:

@ a stick edge: a segment of length 1, bounding on tiles of different
parities.
@ a stick: a maximal path of stick edges.

@ Sticks cannot intersect. Thus two close long sticks must have same

orientation.
@ Bound the probability that most sticks are short, by direct calculation.



Properly divided squares (1/3)

@ Let € be a small constant.

o Set M = M()\) (think M = eXl/?)

@ Let R be a M x M square

@ define R~ as (1 — 2¢)M x (1 — 2¢)M square concentric to R. (assume
eM e 7Z)

e Say R is properly divided (for ) if a stick divides both R and R~
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M Examples of possible sticks.
A properly dividing stick Green ones properly divide R
and red ones don't.



Properly divided squares (2/3)




Properly divided squares (3/3)

e If R and R + (eM,0) are properly divided, they are properly divided in
same orientation.
@ Same for R and R + (0,eM).

R R+(&gM,0)

=



The main lemma

Let R be M x M for M = e\'/2. Denote by Eg the event that < is
not properly divided.

There is € > 0 such that for all sufficiently large A,

_3)1/2

n(Er) < e

@ In fact a multiplicative bound holds. If A is a set of copies of R shifted
by vectors in (MZ)? then

u( () Er) < e NFA
R'€A

@ This allows to prove orientational order with a Peierls argument.



The disseminated event

@ Define the disseminated version of Eg to be Eg = ﬂ Eryy.
ve(MZ)? /(LZ)?
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the event Eg

@ The 2 x 2 hard-square model is satisfies reflection positivity.
@ Thus the chessboard estimate holds, and implies:

#(ER) < (u(ER)) 2



Bounding the disseminated event
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@ In Eg all sticks have length 2M at most, except for sticks contained in
the yellow regions.

@ For simplicity we will discuss bounding the sum over the event Ey; that
all sticks have length at most 2M.
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@ Bound separately the nominator and denominator.



Lower bound on Zj

o Consider a one dimensional system: A = {0} x Z/L7Z
for even L.

@ Geometrically, configurations are packings in a 2 x L
rectangle.
1/2 L/2
o Easy to see that: Zygyyq12.. 1-1}) = (1 + A7 Y >
@ Conclude for the torus: , ) )
—1/2\L%/4  3L2X"1/2
Zapzya = A+ A2~ e




Bounding > r P/

@ Hp = {components of vacancies and sticks that may appear in
o € Ep, up to translation}

@ weight of a component: w(c) = A=2Y(9) where v(c) is the number of
vacancies in ¢ € Hpy.

o Next slide: > 4, w(c)= Cer™1/2

@ For each component pick an arbitrary root.
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Bounding > .4, w(c)

@ Proof idea: Sum )\_ZV(2I\/I)d = (26)7 - ARd=v)/4
over “components up to the length of sticks”
where d counts “degrees of freedom”.

v=4 d=1 v=8 d=3 v=12 d=2

2eN1/2 (2€)3A1/2 (2¢)2\2



Reflection positivity

I a vertical line through vertices of A

| and its opposite divide A to two rectangles Ry, R.

7 is the reflection through /

7 exchanges Ry with Ry.

let f be Rp-local function.

Conditioned on the restriction to / and its opposite, p(f) = u(7f) and
w(f - 7f) = p(f) - p(rf) thus, Reflection positivity: p(f-7f) >0
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Reflection positivity

o for Ry-local f, g, define < f, g >= pu(f - 7g)
@ Reflection positivity: < -,- > is a non-negative bilinear form.

@ Thus the Cauchy-Schwarz inequality holds:
<f,g>< J<Ff,f><g,g>

e Example: pu(f) < \/,u(f-Tslf) < f/u(f'Tslf'752f'TS1TSzf)




The chessboard estimate

o Let R be a rectangle.
e assume 2Width(R), 2Height(R) divide L.

o let T = T,’\? be the isometries generated by reflections in the sides of
R.

For each 7 € T, let f; be R-local. (Then 7f; is TR-local)

1/#T
() = [M(H Tf)] .
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Define a norm:

@ Then
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Open problems

@ A similar result is expected for k x k tiles, however, a different proof is
needed since reflection positivity does not apply.

@ What happens for 2 x 2 x 2 cubes? We conjecture the existance of
exactly 12 phases (of columnar order) at high fugacity.

@ What happens for 1 x k rods? At intermediate fugacity, a nematic
phase was proved using cluster expansions (Disertori and Giuliani,
2013). What happens at high fugacity?

you for listening!



