Random high-density packings of 2×2 tiles on the square lattice

> Daniel Hadas, Tel Aviv University Joint work with Ron Peled

HUJI Dynamics Seminar, 16/11/2021

The hard-core lattice gas

- Domain: $Λ = (\mathbb{Z}/L\mathbb{Z})^2$ ("a discrete $L \times L$ torus").
- Configuration: a set $\sigma \subset \Lambda$ with no two points at distance one.
- Fugacity parameter: $\lambda > 0$.
- Probability measure: $\mu_{\Lambda,\lambda}(\sigma) = \frac{\lambda^{\# \sigma}}{Z_{\Lambda,\lambda}}$ $\frac{\lambda^{\pi\circ}}{Z_{\Lambda,\lambda}}$ where:
	- \bullet # σ is the number of points in σ .
	- $Z_{\Lambda,\lambda}$ is a normalization constant (the partition function).

Phase transition in the hard-core model

- \bullet Restrict to even L. The long-range order is captured by two events:
- $\bullet E_0 = \{99\% \text{ of the points in } \sigma \text{ have an even sum of coordinates}\}.$
- \bullet $E_1 = \{99\% \text{ of the points in } \sigma \text{ have an odd sum of coordinates} \}.$

- \bullet Dobrushin uniqueness condition: model is disordered at small λ .
- \bullet Open: Is there a single transition point λ_c from a disordered to an ordered state?

Continuum hard-core models

- Configuration σ consists of spheres in a domain in \mathbb{R}^d .
- Sampled with probability proportional to $\lambda^{\# \sigma}$ (with respect to a suitable Lebesgue measure).
- Major open problems:

Is there an ordered state in dimensions $d \geq 3$? Is the rotational symmetry broken in dimension $d = 2$? Richthammer (2007): No translational-symmetry breaking in two dimensions.

image credit: Ian Jauslin

Lattice hard-core models

- Comprehensive study by Mazel–Stuhl–Suhov (2018-19) of hard-core models on \mathbb{Z}^2 , triangular and hexagonal lattices with general radius of exclusion.
- Prove long-range order at high fugacities in non-sliding cases.
- Sliding phenomenon:
	- Significant non-uniqueness of maximal density packings due to a sliding degree of freedom.
	- Occurs for a finite number of exclusion radii.
	- Unclear whether these cases still undergo a phase transition.

image credit: Izabella Stuhl

Lattice hard-core models: Sliding

Sliding in the 2 \times 2-hard-square model $(\mathbb{Z}^2, D = 2)$

Hard rod models

- Monomer-Dimer model:
	- Configuration consists of 2×1 rods (i.e., a matching).
	- Heilmann–Lieb (1972) famously proved the absence of a phase transition on all graphs.
- Many other models:
	- Onsager (isotropic-nematic transition in liquid crystals, 1949)
	- Heilmann–Lieb (1979) and Jauslin–Lieb (interacting monomer-dimer 2018).
	- I offe-Velenik-Zahradník (variable length rods on \mathbb{Z}^2 , 2005)
	- Disertori-Giuliani (long rods on \mathbb{Z}^2 , 2013),
	- Disertori-Giuliani-Jauslin (anisotropic plates in \mathbb{R}^3 , 2020)

image credits: Zvonimir Dogic (2016), Nicolas Allegra (2015), Heilmann-Lieb (1979)

The 2 \times 2 hard squares model

- Domain: $Λ = (\mathbb{Z}/L\mathbb{Z})^2$ ("a discrete $L \times L$ torus").
- **•** Configuration: a set σ of pairwise disjoint 2 \times 2 tiles with centers in Λ .
- Fugacity parameter: $\lambda > 0$.
- Probability of a configuration: $\mu_{\Lambda,\lambda}(\sigma) = \frac{\lambda^{\# \sigma \frac{L^2}{4}}}{Z_{\Lambda,\lambda}}$ where:
	- $\bullet \# \sigma$ is the number of tiles in σ .
		- (–4 $\left(\#\sigma-\frac{L^2}{4}\right)$ $\left(\frac{1^2}{4}\right)$ counts vacant 1×1 squares).
	- \bullet Z_{Λ} is a normalization constant (the partition function).

Main result: Columnar order

- Restrict to even L.
- Each tile has one of four parities: (Even,Even), (Even,Odd), (Odd,Even), (Odd, Odd).
- Let $E_{\rm \parallel,0}$, be the "ordering by even columns" event: more than 49% of the tiles have parity (Even, Even), and more than 49% of the tiles have parity (Even, Odd).
- Similarly define $E_{\parallel,1},E_{-,0},E_{-,1}$.

Theorem $(H.-Peled, 2021+)$

For all sufficiently large λ ,

$$
\lim_{\substack{L\to\infty\\L\text{ even}}} \mu_{\Lambda,\lambda}(E_{],0}\cup E_{],1}\cup E_{-,0}\cup E_{-,1})=1
$$

an illustration of $E_{\perp 0}$

Theorem (H.–Peled, 2021+)

For sufficiently large λ , the following holds:

The set of doubly-periodic infinite volume Gibbs measures, is a simplex with four vertices (denoted $\mu_{ver,0}$, $\mu_{ver,1}$, $\mu_{hor,0}$ and $\mu_{hor,1}$).

These four measures are related to each other by translations and rotations.

One of them $(\mu_{\text{ver,0}})$ satisfies the following:

- \bullet $\mu_{\text{ver.0}}$ is (2 $\mathbb{Z} \times \mathbb{Z}$)-invariant and extremal.
- ${\bf 2}$ Columnar order: $\mu_{\rm ver,0}\left(\sigma(0,1)\right)=\Theta(\lambda^{-1}).$
- ³ Correlations decay exponentially with distance, for a non-isotropic distance function:

$$
d_{\rm ver}((x_1,y_1),(x_2,y_2)):=\lambda^{-1/2}|y_2-y_1|+|x_2-x_1|
$$

Proof Ideas

Note: we only discuss the proof of orientational order.

Interfaces between phases

Sticks

For a configuration σ , define:

- a stick edge: a segment of length 1, bounding on tiles of different parities.
- a stick: a maximal path of stick edges.

- Sticks cannot intersect. Thus two close long sticks must have same orientation.
- Bound the probability that most sticks are short, by direct calculation.

Properly divided squares (1/3)

- \bullet Let ϵ be a small constant.
- Set $M = M(\lambda)$ (think $M = \epsilon \lambda^{1/2})$
- Let R be a $M \times M$ square
- define R^- as $(1-2\epsilon)M\times(1-2\epsilon)M$ square concentric to R_{+} (assume $\epsilon M \in \mathbb{Z}$
- Say R is properly divided (for σ) if a stick divides both R and R⁻.

Properly divided squares (2/3)

Properly divided squares (3/3)

- If R and $R + (\epsilon M, 0)$ are properly divided, they are properly divided in same orientation.
- Same for R and $R + (0, \epsilon M)$.

The main lemma

Let R be $M \times M$ for $M = \epsilon \lambda^{1/2}$. Denote by E_R the event that R is not properly divided.

Lemma

There is $\epsilon > 0$ such that for all sufficiently large λ ,

 $\mu(E_R)\leq e^{-\epsilon^3\lambda^{1/2}}$

 \bullet In fact a multiplicative bound holds. If A is a set of copies of R shifted by vectors in $(M\Z)^2$ then

$$
\mu\big(\bigcap_{R'\in A}E_R\big)\le e^{-\epsilon^3\lambda^{1/2}|A|}
$$

This allows to prove orientational order with a Peierls argument.

The disseminated event

• Define the disseminated version of E_R to be $\overline{E_R}$:= \cap $v \in (M\Z)^2/(L\Z)^2$ E_{R+v} .

- The 2×2 hard-square model is satisfies reflection positivity.
- Thus the chessboard estimate holds, and implies:

$$
\mu(E_R) \leq \left(\mu(\overline{E_R})\right)^{\frac{M^2}{L^2}}
$$

Bounding the disseminated event

- In E_R all sticks have length 2M at most, except for sticks contained in the yellow regions.
- For simplicity we will discuss bounding the sum over the event E_M that all sticks have length at most 2M.

$$
\mu(E_M)=\frac{\sum_{\sigma\in E_M}\lambda^{\#\sigma-\frac{L^2}{4}}}{Z_{\Lambda,\lambda}}\leq?
$$

Bound separately the nominator and denominator.

Lower bound on $Z_{\Lambda\lambda}$

- Consider a one dimensional system: $Λ = {0} \times \mathbb{Z}/L\mathbb{Z}$ for even L.
- Geometrically, configurations are packings in a 2 \times L rectangle.
- Easy to see that: $Z_{\{0\}\times \{1,2...,L-1\},\lambda} \geq \left(1+\lambda^{-1/2}\right)^{L/2}$
- Conclude for the torus: $Z_{(\mathbb{Z}/L\mathbb{Z})^2,\lambda} \geq (1+\lambda^{-1/2})^{L^2/4} \approx e^{\frac{1}{4}L^2\lambda^{-1/2}}$

Θ \mathcal{H}_M = {components of vacancies and sticks that may appear in $\sigma \in E_M$, up to translation}

weight of a component: $w(c)\coloneqq \lambda^{-\frac{1}{4} \nu(c)}$ where $\nu(c)$ is the number of vacancies in $c \in \mathcal{H}_M$.

• Next slide:
$$
\sum_{c \in \mathcal{H}_M} w(c) = C \epsilon \lambda^{-1/2}
$$

Bounding $\sum_{\sigma\in E_{\mathsf{M}}}\lambda^{\#\sigma-\mathsf{L}^{2}/4}$

• For each component pick an arbitrary root.

$$
\sum_{\sigma \in E_M} \lambda^{\# \sigma - \frac{L^2}{4}} \leq \sum_{\sigma \in E_M} \prod_{v \in \Lambda^2} \begin{cases} w(c) & v \text{ root of } c \\ 1 & o/w \end{cases}
$$

$$
\leq \left(1 + \sum_{c \in \mathcal{H}_M} w(c)\right)^{L^2} \leq e^{C\epsilon \lambda^{-1/2} L^2}
$$

Bounding $\sum_{c\in\mathcal{H}_M}w(c)$

Proof idea: Sum $\lambda^{-\frac{1}{4}\nu}(2M)^d=(2\epsilon)^d\cdot\lambda^{(2d-\nu)/4}$ over "components up to the length of sticks" where d counts "degrees of freedom".

Reflection positivity

- \bullet *l* a vertical line through vertices of Λ
- I and its opposite divide Λ to two rectangles R_0, R_1 .
- \bullet τ is the reflection through *l*
- \bullet τ exchanges R_0 with R_1 .
- let f be R_0 -local function.
- Conditioned on the restriction to l and its opposite, $\mu(f) = \mu(\tau f)$ and $\mu(f \cdot \tau f) = \mu(f) \cdot \mu(\tau f)$ thus, Reflection positivity: $\mu(f \cdot \tau f) \geq 0$

Reflection positivity

- for R_0 -local f, g, define $\langle f, g \rangle = \mu (f \cdot \tau g)$
- Reflection positivity: $\langle \cdot, \cdot \rangle$ is a non-negative bilinear form.
- Thus the Cauchy-Schwarz inequality holds: $< f, g > \leq$ √ $<$ f , f $><$ g , g $>$
- Example: $\mu(f) \leq \sqrt{\mu(f \cdot \tau_{s_1} f)} \leq \sqrt[4]{\mu(f \cdot \tau_{s_1} f \cdot \tau_{s_2} f \cdot \tau_{s_1} \tau_{s_2} f)}$

The chessboard estimate

- Let R be a rectangle.
- assume $2Width(R)$, $2Height(R)$ divide L.
- Let $\mathcal{T} = \mathcal{T}_{\Lambda}^R$ be the isometries generated by reflections in the sides of R.
- For each $\tau \in \mathcal{T}$, let f_{τ} be R-local. (Then τf_{τ} is τ R-local)
- Define a norm:

$$
\jmath_{\Lambda}^{R}\!(f) \coloneqq \left[\mu \left(\prod_{\tau \in \mathcal{T}} \tau f \right) \right]^{1/\# \mathcal{T}}
$$

Then

$$
\mu\left(\prod_{\tau\in\mathcal{T}}\tau f_{\tau}\right)\leq \prod_{\tau\in\mathcal{T}}\mathfrak{z}^R_{\text{A}}(f_{\tau})
$$

.

- A similar result is expected for $k \times k$ tiles, however, a different proof is needed since reflection positivity does not apply.
- What happens for $2 \times 2 \times 2$ cubes? We conjecture the existance of exactly 12 phases (of columnar order) at high fugacity.
- What happens for $1 \times k$ rods? At intermediate fugacity, a nematic phase was proved using cluster expansions (Disertori and Giuliani, 2013). What happens at high fugacity?

you for listening!