Random high-density packings of 2×2 tiles on the square lattice

Daniel Hadas, Tel Aviv University Joint work with Ron Peled

HUJI Dynamics Seminar, 16/11/2021

The hard-core lattice gas

- Domain: $\Lambda = (\mathbb{Z}/L\mathbb{Z})^2$ ("a discrete $L \times L$ torus").
- Configuration: a set $\sigma \subset \Lambda$ with no two points at distance one.
- Fugacity parameter: $\lambda > 0$.
- Probability measure: $\mu_{\Lambda,\lambda}(\sigma) = \frac{\lambda^{\#\sigma}}{Z_{\Lambda,\lambda}}$ where:
 - $\#\sigma$ is the number of points in σ .
 - $Z_{\Lambda,\lambda}$ is a normalization constant (the partition function).

Phase transition in the hard-core model

- Restrict to even *L*. The long-range order is captured by two events:
- $E_0 = \{99\% \text{ of the points in } \sigma \text{ have an even sum of coordinates}\}.$
- $E_1 = \{99\% \text{ of the points in } \sigma \text{ have an odd sum of coordinates}\}.$

- Dobrushin uniqueness condition: model is disordered at small λ .
- Open: Is there a single transition point λ_c from a disordered to an ordered state?

Continuum hard-core models

- Configuration σ consists of spheres in a domain in \mathbb{R}^d .
- Sampled with probability proportional to $\lambda^{\#\sigma}$ (with respect to a suitable Lebesgue measure).
- Major open problems:

Is there an ordered state in dimensions $d \ge 3$? Is the rotational symmetry broken in dimension d = 2? Richthammer (2007): No translational-symmetry breaking in two dimensions.

image credit: Ian Jauslin

Lattice hard-core models

- Comprehensive study by Mazel–Stuhl–Suhov (2018-19) of hard-core models on Z², triangular and hexagonal lattices with general radius of exclusion.
- Prove long-range order at high fugacities in non-sliding cases.
- Sliding phenomenon:
 - Significant non-uniqueness of maximal density packings due to a sliding degree of freedom.
 - Occurs for a finite number of exclusion radii.
 - Unclear whether these cases still undergo a phase transition.

image credit: Izabella Stuhl

Lattice hard-core models: Sliding

Sliding in the 2 × 2-hard-square model (\mathbb{Z}^2 , D = 2)

Hard rod models

- Monomer-Dimer model:
 - Configuration consists of 2×1 rods (i.e., a matching).
 - Heilmann–Lieb (1972) famously proved the absence of a phase transition on all graphs.
- Many other models:
 - Onsager (isotropic-nematic transition in liquid crystals, 1949)
 - Heilmann–Lieb (1979) and Jauslin–Lieb (interacting monomer-dimer 2018).
 - Ioffe-Velenik-Zahradník (variable length rods on \mathbb{Z}^2 , 2005)
 - Disertori–Giuliani (long rods on \mathbb{Z}^2 , 2013),
 - Disertori–Giuliani–Jauslin (anisotropic plates in \mathbb{R}^3 , 2020)

image credits: Zvonimir Dogic (2016), Nicolas Allegra (2015), Heilmann-Lieb (1979)

The 2×2 hard squares model

- Domain: $\Lambda = (\mathbb{Z}/L\mathbb{Z})^2$ ("a discrete $L \times L$ torus").
- Configuration: a set σ of pairwise disjoint 2 \times 2 tiles with centers in A.
- Fugacity parameter: $\lambda > 0$.
- Probability of a configuration: $\mu_{\Lambda,\lambda}(\sigma) = \frac{\lambda^{\#\sigma \frac{L^2}{4}}}{Z_{\Lambda,\lambda}}$ where:
 - $\#\sigma$ is the number of tiles in σ . $\left(-4\left(\#\sigma - \frac{l^2}{4}\right)$ counts vacant 1×1 squares).
 - $Z_{\Lambda,\lambda}$ is a normalization constant (the partition function).

Main result: Columnar order

- Restrict to even L.
- Each tile has one of four parities: (Even,Even), (Even,Odd), (Odd,Even), (Odd, Odd).
- Let $E_{\parallel,0}$, be the "ordering by even columns" event: more than 49% of the tiles have parity (Even, Even), and more than 49% of the tiles have parity (Even, Odd).
- Similarly define $E_{|,1}, E_{-,0}, E_{-,1}$.

Theorem (H.–Peled, 2021+)

For all sufficiently large λ ,

$$\lim_{\substack{L\to\infty\\ even}} \mu_{\Lambda,\lambda}(E_{|,0}\cup E_{|,1}\cup E_{-,0}\cup E_{-,1}) = 1$$

an illustration of $E_{\parallel,0}$

Theorem (H.–Peled, 2021+)

For sufficiently large λ , the following holds:

The set of doubly-periodic infinite volume Gibbs measures, is a simplex with four vertices (denoted $\mu_{ver,0}$, $\mu_{ver,1}$, $\mu_{hor,0}$ and $\mu_{hor,1}$).

These four measures are related to each other by translations and rotations.

One of them $(\mu_{\mathrm{ver},0})$ satisfies the following:

- $\mu_{ver,0}$ is $(2\mathbb{Z} \times \mathbb{Z})$ -invariant and extremal.
- Solumnar order: $\mu_{\text{ver},0}(\sigma(0,1)) = \Theta(\lambda^{-1}).$
- Orrelations decay exponentially with distance, for a non-isotropic distance function:

$$d_{ ext{ver}}((x_1,y_1),(x_2,y_2)):=\lambda^{-1/2}|y_2-y_1|+|x_2-x_1|$$

Proof Ideas

• Note: we only discuss the proof of orientational order.

Interfaces between phases

Sticks

For a configuration σ , define:

- a stick edge: a segment of length 1, bounding on tiles of different parities.
- a stick: a maximal path of stick edges.

- Sticks cannot intersect. Thus two close long sticks must have same orientation.
- Bound the probability that most sticks are short, by direct calculation.

Properly divided squares (1/3)

- Let ϵ be a small constant.
- Set $M = M(\lambda)$ (think $M = \epsilon \lambda^{1/2}$)
- Let R be a $M \times M$ square
- define R^- as $(1 2\epsilon)M \times (1 2\epsilon)M$ square concentric to R. (assume $\epsilon M \in \mathbb{Z}$)
- Say R is properly divided (for σ) if a stick divides both R and R^- .

Properly divided squares (2/3)

Properly divided squares (3/3)

- If R and $R + (\epsilon M, 0)$ are properly divided, they are properly divided in same orientation.
- Same for R and $R + (0, \epsilon M)$.

The main lemma

Let *R* be $M \times M$ for $M = \epsilon \lambda^{1/2}$. Denote by E_R the event that *R* is **not** properly divided.

Lemma

There is $\epsilon > 0$ such that for all sufficiently large λ ,

 $\mu(E_R) \leq e^{-\epsilon^3 \lambda^{1/2}}$

 In fact a multiplicative bound holds. If A is a set of copies of R shifted by vectors in (MZ)² then

$$\mu(\bigcap_{R'\in A} E_R) \le e^{-\epsilon^3\lambda^{1/2}|A|}$$

• This allows to prove orientational order with a Peierls argument.

The disseminated event

• Define the disseminated version of E_R to be $\overline{E_R} := \bigcap_{v \in (M\mathbb{Z})^2/(L\mathbb{Z})^2} E_{R+v}$.

- The 2×2 hard-square model is satisfies reflection positivity.
- Thus the chessboard estimate holds, and implies:

$$\mu(E_R) \leq \left(\mu(\overline{E_R})\right)^{\frac{M^2}{L^2}}$$

Bounding the disseminated event

- In E_R all sticks have length 2*M* at most, except for sticks contained in the yellow regions.
- For simplicity we will discuss bounding the sum over the event E_M that all sticks have length at most 2M.

$$\mu(E_M) = \frac{\sum_{\sigma \in E_M} \lambda^{\#\sigma - \frac{L^2}{4}}}{Z_{\Lambda,\lambda}} \leq ?$$

• Bound separately the nominator and denominator.

Lower bound on $Z_{\Lambda,\lambda}$

- Consider a one dimensional system: Λ = {0} × Z/LZ for even L.
- Geometrically, configurations are packings in a 2 \times L rectangle.

• Easy to see that:
$$Z_{\{0\} imes\{1,2...,L-1\},\lambda} \geq \left(1+\lambda^{-1/2}
ight)^{L/2}$$

• Conclude for the torus: $Z_{(\mathbb{Z}/L\mathbb{Z})^2,\lambda} \ge (1 + \lambda^{-1/2})^{L^2/4} \approx e^{\frac{1}{4}L^2\lambda^{-1/2}}$

Bounding $\sum_{\sigma \in E_M} \lambda^{\#\sigma - L^2/4}$

- $\mathcal{H}_M = \{\text{components of vacancies and sticks that may appear in } \sigma \in E_M, \text{ up to translation} \}$
- weight of a component: $w(c) := \lambda^{-\frac{1}{4}v(c)}$ where v(c) is the number of vacancies in $c \in \mathcal{H}_M$.

• Next slide:
$$\sum_{c\in\mathcal{H}_M}w(c)=C\epsilon\lambda^{-1/2}$$

• For each component pick an arbitrary root.

$$\sum_{\sigma \in E_M} \lambda^{\#\sigma - \frac{L^2}{4}} \leq \sum_{\sigma \in E_M} \prod_{v \in \Lambda^2} \begin{cases} w(c) & v \text{ root of } c \\ 1 & o/w \end{cases}$$
$$\leq \left(1 + \sum_{c \in \mathcal{H}_M} w(c) \right)^{L^2} \leq e^{C\epsilon \lambda^{-1/2} L^2}$$

Bounding $\sum_{c\in\mathcal{H}_M}w(c)$

Proof idea: Sum λ^{-1/4 v}(2M)^d = (2ε)^d · λ^{(2d-v)/4} over "components up to the length of sticks" where d counts "degrees of freedom".

Reflection positivity

- I a vertical line through vertices of $\boldsymbol{\Lambda}$
- I and its opposite divide Λ to two rectangles R_0, R_1 .
- τ is the reflection through I
- τ exchanges R_0 with R_1 .
- let f be R_0 -local function.
- Conditioned on the restriction to *I* and its opposite, $\mu(f) = \mu(\tau f)$ and $\mu(f \cdot \tau f) = \mu(f) \cdot \mu(\tau f)$ thus, Reflection positivity: $\mu(f \cdot \tau f) \ge 0$

Reflection positivity

- for R_0 -local f, g, define $\langle f, g \rangle = \mu(f \cdot \tau g)$
- Reflection positivity: $<\cdot,\cdot>$ is a non-negative bilinear form.
- Thus the Cauchy-Schwarz inequality holds: $< f, g > \le \sqrt{< f, f > < g, g >}$
- Example: $\mu(f) \leq \sqrt{\mu(f \cdot \tau_{s_1} f)} \leq \sqrt[4]{\mu(f \cdot \tau_{s_1} f \cdot \tau_{s_2} f \cdot \tau_{s_1} \tau_{s_2} f)}$

	S ₁	
S ₂	f	

The chessboard estimate

- Let R be a rectangle.
- assume 2Width(R), 2Height(R) divide L.
- Let T = T^R_Λ be the isometries generated by reflections in the sides of R.
- For each $\tau \in T$, let f_{τ} be *R*-local. (Then τf_{τ} is τR -local)
- Define a norm:

$$\mathfrak{z}^{R}_{\Lambda}(f) \coloneqq \left[\mu \left(\prod_{\tau \in T} \tau f \right) \right]^{1/\#T}$$

Then

$$\mu\left(\prod_{\tau\in T}\tau f_{\tau}\right)\leq\prod_{\tau\in T}\mathfrak{z}_{\Lambda}^{R}(f_{\tau})$$

f	ţ	f	4
f	f	f	f
- ŧ	ţ	ŧ	ţ
f	f	f	f
ŧ	Ť	ŧ	ł
f	f	f	f

- A similar result is expected for $k \times k$ tiles, however, a different proof is needed since reflection positivity does not apply.
- What happens for 2 × 2 × 2 cubes? We conjecture the existance of exactly 12 phases (of columnar order) at high fugacity.
- What happens for 1 × k rods? At intermediate fugacity, a nematic phase was proved using cluster expansions (Disertori and Giuliani, 2013). What happens at high fugacity?

you for listening!