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The Chessboard Estimate is an inequality, which holds for lattice systems in
statistical mechanics if they satisfy a special property called Reflection Positiv-
ity. It is in a certain sense a generalization of the Cauchy-Schwarz inequality.

We will first define the Potts model, and state a theorem about it. Then
we discuss Reflection Positivity, state the Chessboard Estimate and prove it.
Finally, we show how it is used to prove the theorem about the Potts model.

This one-hour talk is self contained, and almost everything is given proof.
This comes at the cost of giving a very narrow view of the subject. For in-
troductions giving a wider view, see [1], [2, Chapter 10], [3, Section 2.7.1] and
[4].

1 The Potts Model
For d, L ∈ N, fix the domain to be a discrete torus: Λ := (Z/ZL)d = {0, . . . , L−
1}d. Define a graph structure on Λ: for u, v ∈ Λ say that uv ∈ E(Λ) iff
u− v = ±ei for some i (with ei denoting an element of the standard basis).

Figure 1: Λ for d = 2, L = 3

Configurations assign a spin from the set S := {1, . . . , s} to each site of Λ.
The set of configurations is Ω = {σ : Λ → S}.

For a configuration σ, an edge uv is called bad if σ(u) ̸= σ(v).
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We now define a measure on Ω as follows.
Weight of configuration: w(σ) = t#of bad edges in σ.
Partition function: Z =

∑
σ∈Ω w(σ).

Probability measure: P(σ) = w(σ)/Z.
To sum up, we remind that the model has four parameters: d, L, s and t.

Remark 1.1. The Ising model is the special case s = 2.

1.1 What we plan to prove:
Theorem 1.2 (long range order). For d = 2, and fixed s,

lim
t→0

sup
L∈2N

sup
u,v∈Λ

P(σ(u) ̸= σ(v)) = 0

Remark 1.3. Note that for fixed L, limt→0 P(σ(u) ̸= σ(v)) = 0 is trivial since
the probability that all spins are equal approaches 1.

Remark 1.4. Taking d = 2 is only for simplicity of presentation — the result
holds for any d ≥ 2. The limitation that L is even is not necessary, and is just
an artifact of our proof technique. We will use “reflection positivity through
vertices”. One can overcome the limitation by using reflection positivity both
through vertices and through edges.

Lemma 1.5 (multiplicative bound for bad edges). Fix d = 2. Let L ∈ 2N. For
each set A ⊂ E(Λ),

P(all e ∈ A are bad) ≤ (c(s, t))
|A|

where limt→0 c(s, t) = 0.

We now prove the theorem using the lemma. In Section 4 we will deduce
the lemma from the chessboard estimate.

Proof of Theorem. Denote by B the set of bad edges, and by B∗ the set of their
dual edges. Let C be a set of cycles in the dual graph of Λ:

C :=
{contractible cycles

around u or v

}
∪
{non-contractible

cycles
}

Then whenever σ(u) ̸= σ(v), there is A∗ ∈ C for which A ⊂ B (where A is
the set of dual edges of A∗).

For u = (x, y), a contractible cycle A∗ ∈ C around u in the dual graph
can be specified as a sequence (w0, . . . , w|B|) with w0 = (x + a + 1/2, y + 1/2)
with 0 < a < |A| and with wi+1 − wi ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)} with
consecutive increments never summing to 0. Taking into account cycles around
v and non-contractible cycles, we have

|{A∗ ∈ C | |A| = k}| ≤ 4k3k.
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By a union bound

P(σ(u) ̸= σ(v)) ≤
∑
C∗∈C

P(all e ∈ A are bad)

≤
∑
k=4

4k3k (c(s, t))
k t→0−−−→ 0

2 Reflection Positivity
Assume that L is even. Consider two “halves” of the torus:

Λ0 = {0, . . . , L/2} × {0, . . . , L− 1}d−1

Λ1 = {−L/2, . . . , 0} × {0, . . . , L− 1}d−1

Figure 2: Two “halves” of Λ. In red appears Λ0 ∩ Λ1.

And note that Λ0∩Λ1 = {0, L/2}×{0, . . . , L−1}d−1. Let τ0 be the reflection
through the intersection of the halves: τ0(x, y) = (−x, y) (what we do here
applies for general dimension, but we fall back to d = 2 whenever this simplifies
notation). Note that τ0(Λ0) = Λ1 and τ0(Λ1) = Λ0.

Consider the vector space of functions VΛ0
:= {f : SΛ0 → R} (think of its

elements as RVs that depend only on half of the configuration — call them
Λ0-local functions).

For f ∈ VΛ0
and σ : Λ → S we will abuse notation by writing f(σ) instead

of the more accurate f(σ Λ0
).

For f : SΛ → R define τf by τf(σ) = f(σ ◦ τ).
Define a bilinear form on VΛ0

Definition 2.1 (reflection product).

< f, g >:= E[f · τ0g]
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Note that τg is Λ1-local.
Claim 2.2. < f, g >=< g, f >

Proof. < f, g >= E[f · τ0g] = E[τ0(g · τ0f)] = E[g · τ0f ] =< g, f >

Claim 2.3 (Reflection Positivity). The bilinear form < ·, · > is non-negative.

Proof. Let ω : Λ0 ∩ Λ1 → S and define E = {σ ∈ Ω |σ Λ0∩Λ1 = ω}

E[f · τf |E]
(∗)
= E[f |E] · E[τf |E] = (E[f |E])

2 ≥ 0.

Exercise 2.4. Justify (∗). (This is a special case of the domain Markov prop-
erty).

Corollary 2.5 (Cauchy-Schwarz).

< f, g >≤
√

< f, f >< g, g >

Proof. WLOG < f, f >=< g, g >= 1, by homogeneity. Expand 0 ≤< f−g, f−
g >.

Example 2.6. Let E be an event measurable with respect to σ Λ0
. Then E is

positively correlated with τE.

Proof.

P(τE) = P(E) = E[1E · τ1] =< 1E , 1 >

≤
√
< 1E ,1E > · < 1, 1 >

=
√
E[1E · τ1E ] · E[1 · τ1] =

√
P(E ∩ τE)

thus P(E ∩ τE) ≥ P(E) · P(τE)

Example 2.7. Let d = 2. For each 1 ≤ k ≤ L define a set of edges Ak =
{(x, y)(x + 1, y) | 0 ≤ x < k}. Define Ek to be the event that all e ∈ Ak are
bad. Define τk to be the reflection through {x = k}, τ(x, y) = (2k−x, y). Then
E2k = Ek ∩ τkEk. By the previous example applied with τk instead of τ0, we
have

P(Ek) = P(τkEk) ≤
√
P(E2k).

Assume that L = 2n. Then applying the above repeatedly gives P(E1) ≤
L
√

P(EL).

P (EL) ≤
1

Z

∑
σ∈F

w(σ) ≤ |S|L
2

max
σ∈EL

w(σ) ≤ |S|L
2

· tL
2

since for a configuration in EL there are L2 bad edges, |EL| ≤ |S|L2

and Z ≥ 1.
This gives P(E1) ≤ (st)L. Note that this is a special case of Lemma 1.5, with
c(s, t) = st and A = A1.
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3 The Chessboard estimate
Fix M such that 2M divides L. Denote R = {0, . . . ,M}d ⊂ Λ. Consider the
vector space VR = {f : SR → R} (the space of R-local functions). Define a
set of torus isometries (isomorphisms) G. This is the group generated by all
reflections τl where l is of the form {x = C} or {y = C} and M divides C.
Claim 3.1. There is a 1-1 correspondence between squares R′ = R+ (xM, yM)

and elements τ of G, where τR = R′. In particular, |G| =
(

L
M

)d.
Proof. It is clear that there is τ ∈ G for each R′. Reflections through orthogonal
lines (hyperplanes for general d) commute, thus it suffices to consider d = 1. It
remains to see that G = L/M . The composition of two reflections is a translation
by a multiple of 2M . Since 2M divides L, translations by odd multiples of M
are not in G, so G has L/2M translations, and L/2M reflections.

Definition 3.2 (Chessboard product). For (fτ )τ∈G ∈ (VR)
G define

< fτ >τ∈G:= E[
∏
τ∈G

τfτ ]

Definition 3.3 (The Chessboard “norm”). For f ∈ VR define

∥f∥R := (L/M)d
√

< f >τ∈G = (L/M)d

√
E[

∏
τ∈G

τf ]

∥·∥R is obviously homogeneous. The expectation inside the root is indeed
nonnegative, however it may be zero for non-zero f . Thus it would be more
proper to call it a seminorm rather than a norm. Finally, to show that it is a
seminorm, we must prove subaditivity. This we do not prove now, and we do
not assume it.

Exercise 3.4. Show that for sufficiently large M , there is 0 ̸= f ∈ VR with
∥f∥R.

To simplify notation, consider the case d = 1,L/M = 6. Recall that R =
{0, . . . ,M} and define τ0, . . . , τ5 by τiR = R + iM . We now denote tuples
indexed by G as (fτ0 , fτ1 , fτ2 , fτ3 , fτ4 , fτ5) := (fτ )τ∈G. Then < a, b, c, d, e, f >=
E [a · τ1b · τ2c · τ3d · τ4e · τ5f ]. Denote h0 = τ0a · τ1b · τ2c and h1 = τ0f · τ1e · τ2d.
Note that h0, h1 ∈ VΛ0

and < a, b, c, d, e, f >=< h0, h1 >. If a = b = c = d =
e = f , then h0 = h1 and by the non-negativity of the reflection product we have
< f, f, f, f, f, f >=< h0, h0 >≥ 0, showing that the Chessboard norm is well
defined.
Claim 3.5. For a, b, c, d, e, f ∈ VR,

< a, b, c, d, e, f >≤
√

< a, b, c, c, b, a >< f, e, d, d, e, f >

Proof. By Cauchy-Schwarz, LHS =< h0, h1 >≤
√
< h0, h0 >< h1, h1 > = RHS.
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The claim holds analogously for other reflections. For example, for τM we
get < a, b, c, d, e, f >≤

√
< a, a, f, e, e, f >< b, b, c, d, d, c >.

Theorem 3.6 (The Chessboard estimate). Let (fτ )τ∈G ∈ (VR)
G then

< fτ >τ∈G≤
∏
τ∈G

∥fτ∥R

Proof of Theorem 3.6. Excuse #1: {f ∈ VR : ∥f∥R ̸= 0} is dense (and open) in
VR, thus by continuity we may assume ∥fτ∥R ̸= 0 for each τ ∈ G.
Excuse #2: By scaling each of the fτ , using homogeneity we may assume
∥fτ∥M = 1 for each τ ∈ A.
Excuse #3: We prove for the case d = 1 and L/M = 6, since this suffices to
convey the idea.

Denote F = {fτ : τ ∈ G}.
Thus it suffices to prove that

M := max
g∈FG

< g >≤ 1

Take some g0 ∈ FG with < g >= M . Denote g0 = (a, b, c, d, e, f). Denote
g1 = (a, b, c, c, b, a), g′1 = (f, e, d, d, e, f). Then < g1 >,< g′1 >≤ M by the
definition of M . But M =< g >≤

√
< g1 >< g′1 > ≤

√
M ·M . Thus < g1 >=

M .
Similarly we define g2 = (a, a, a, b, b, a), g′2 = (b, b, c, c, c, c) and show that

< g2 >= M . Again similarly we show < g3 >= M for g3 = (a, a, a, a, a, a). But
then M = ∥a∥6R = 1.

Exercise 3.7. Justify Excuse #1.

Exercise 3.8. Prove that for f, g ∈ VR, ∥f + g∥R ≤ ∥f∥R + ∥g∥R. Hint: think
how Cauchy-Schwarz implies the triangle inequality.

4 Application
Proof of Lemma 1.5. Let M = 1, R = {0, 1}d. Let E be the event that two sites
in R have distinct spins.

∥E∥R = L2

√
P(

⋂
τ∈G

τE) = L2

√
P(

⋂
v∈Λ

E + v) ≤ L2√
sLdtLd/2 = s

√
t

Let A ⊂ E(Λ)
Set B = {τ ∈ G | ∃e ∈ A, e ⊂ τR}. Note that |B| ≥ |A|/2. Then

P(
∧

uv∈A

σ(u) ̸= σ(v)) ≤ E

[∏
τ∈G

{
1τE τ ∈ B

1 τ /∈ B

]

≤
∏
τ∈G

{
∥E∥R τ ∈ B

1 τ /∈ B
= ∥E∥|B|

R ≤
(
s
√
t
)

|A|/2

which suffices for c(s, t) =
√

s
√
t.
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